========================================= Multi Degree of Freedom Holonomic System ========================================= In this example we demonstrate the use of the functionality provided in :mod:`sympy.physics.mechanics` for deriving the equations of motion (EOM) of a holonomic system that includes both particles and rigid bodies with contributing forces and torques, some of which are specified forces and torques. The system is shown below: .. image:: multidof-holonomic.* :align: center The system will be modeled using ``JointsMethod``. First we need to create the ``dynamicsymbols`` needed to describe the system as shown in the above diagram. In this case, the generalized coordinates :math:`q_1` represent lateral distance of block from wall, :math:`q_2` represents ngle of the compound pendulum from vertical, :math:`q_3` represents angle of the simple pendulum from the compound pendulum. The generalized speeds :math:`u_1` represents lateral speed of block, :math:`u_2` represents lateral speed of compound pendulum and :math:`u_3` represents angular speed of C relative to B. We also create some ``symbols`` to represent the length and mass of the pendulum, as well as gravity and others. :: >>> from sympy import zeros, symbols >>> from sympy.physics.mechanics import Body, PinJoint, PrismaticJoint, JointsMethod, inertia >>> from sympy.physics.mechanics import dynamicsymbols >>> q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1, q2, q3, u1, u2, u3') >>> l, k, c, g, kT = symbols('l, k, c, g, kT') >>> ma, mb, mc, IBzz= symbols('ma, mb, mc, IBzz') Next, we create the bodies and connect them using joints to establish the kinematics. :: >>> wall = Body('N') >>> block = Body('A', mass=ma) >>> IB = inertia(block.frame, 0, 0, IBzz) >>> compound_pend = Body('B', mass=mb, central_inertia=IB) >>> simple_pend = Body('C', mass=mc) >>> bodies = (wall, block, compound_pend, simple_pend) >>> slider = PrismaticJoint('J1', wall, block, coordinates=q1, speeds=u1) >>> rev1 = PinJoint('J2', block, compound_pend, coordinates=q2, speeds=u2, ... child_axis=compound_pend.z, child_joint_pos=l*2/3*compound_pend.y, ... parent_axis=block.z) >>> rev2 = PinJoint('J3', compound_pend, simple_pend, coordinates=q3, speeds=u3, ... child_axis=simple_pend.z, parent_joint_pos=-l/3*compound_pend.y, ... parent_axis=compound_pend.z, child_joint_pos=l*simple_pend.y) >>> joints = (slider, rev1, rev2) Now we can apply loads (forces and torques) to the bodies, gravity acts on all bodies, a linear spring and damper act on block and wall, a rotational linear spring acts on C relative to B specified torque T acts on compound_pend and block, specified force F acts on block. :: >>> F, T = dynamicsymbols('F, T') >>> block.apply_force(F*block.x) >>> block.apply_force(-k*q1*block.x, reaction_body=wall) >>> block.apply_force(-c*u1*block.x, reaction_body=wall) >>> compound_pend.apply_torque(T*compound_pend.z, reaction_body=block) >>> simple_pend.apply_torque(kT*q3*simple_pend.z, reaction_body=compound_pend) >>> block.apply_force(-wall.y*block.mass*g) >>> compound_pend.apply_force(-wall.y*compound_pend.mass*g) >>> simple_pend.apply_force(-wall.y*simple_pend.mass*g) With the problem setup, the equations of motion can be generated using the ``JointsMethod`` class with KanesMethod in backend. :: >>> method = JointsMethod(wall, slider, rev1, rev2) >>> method.form_eoms() Matrix([ [ -c*u1(t) - k*q1(t) + 2*l*mb*u2(t)**2*sin(q2(t))/3 - l*mc*(-sin(q2(t))*cos(q3(t)) - sin(q3(t))*cos(q2(t)))*(u2(t) + u3(t))*u3(t) - mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3)*Derivative(u3(t), t) + mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q2(t)) - (2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3)*Derivative(u2(t), t) - (ma + mb + mc)*Derivative(u1(t), t) + F(t)], [ -2*g*l*mb*sin(q2(t))/3 - 2*g*l*mc*sin(q2(t))/3 + 2*l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 - mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9)*Derivative(u3(t), t) - (2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3)*Derivative(u1(t), t) - (IBzz + 4*l**2*mb/9 + 4*l**2*mc/9)*Derivative(u2(t), t) + T(t)], [-g*l*mc*(sin(q2(t))*cos(q3(t)) + sin(q3(t))*cos(q2(t))) - g*l*mc*sin(q2(t))/3 + kT*q3(t) + l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 - l*mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q3(t)) - mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3)*Derivative(u1(t), t) - mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9)*Derivative(u2(t), t) - mc*(2*l**2*cos(q3(t))/3 + 10*l**2/9)*Derivative(u3(t), t)]]) >>> method.mass_matrix_full Matrix([ [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, ma + mb + mc, 2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3, mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3)], [0, 0, 0, 2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3, IBzz + 4*l**2*mb/9 + 4*l**2*mc/9, mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9)], [0, 0, 0, mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3), mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9), mc*(2*l**2*cos(q3(t))/3 + 10*l**2/9)]]) >>> method.forcing_full Matrix([ [ u1(t)], [ u2(t)], [ u3(t)], [ -c*u1(t) - k*q1(t) + 2*l*mb*u2(t)**2*sin(q2(t))/3 - l*mc*(-sin(q2(t))*cos(q3(t)) - sin(q3(t))*cos(q2(t)))*(u2(t) + u3(t))*u3(t) + mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q2(t)) + F(t)], [ -2*g*l*mb*sin(q2(t))/3 - 2*g*l*mc*sin(q2(t))/3 + 2*l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 + T(t)], [-g*l*mc*(sin(q2(t))*cos(q3(t)) + sin(q3(t))*cos(q2(t))) - g*l*mc*sin(q2(t))/3 + kT*q3(t) + l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 - l*mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q3(t))]])