========= Solvers ========= >>> from sympy import * >>> x, y, z = symbols('x y z') >>> init_printing(use_unicode=True) A Note about Equations ====================== Recall from the :ref:`gotchas ` section of this tutorial that symbolic equations in SymPy are not represented by ``=`` or ``==``, but by ``Eq``. >>> Eq(x, y) x = y However, there is an even easier way. In SymPy, any expression not in an ``Eq`` is automatically assumed to equal 0 by the solving functions. Since `a = b` if and only if `a - b = 0`, this means that instead of using ``x == y``, you can just use ``x - y``. For example >>> solveset(Eq(x**2, 1), x) {-1, 1} >>> solveset(Eq(x**2 - 1, 0), x) {-1, 1} >>> solveset(x**2 - 1, x) {-1, 1} This is particularly useful if the equation you wish to solve is already equal to 0. Instead of typing ``solveset(Eq(expr, 0), x)``, you can just use ``solveset(expr, x)``. Solving Equations Algebraically =============================== The main function for solving algebraic equations is ``solveset``. The syntax for ``solveset`` is ``solveset(equation, variable=None, domain=S.Complexes)`` Where ``equations`` may be in the form of ``Eq`` instances or expressions that are assumed to be equal to zero. Please note that there is another function called ``solve`` which can also be used to solve equations. The syntax is ``solve(equations, variables)`` However, it is recommended to use ``solveset`` instead. When solving a single equation, the output of ``solveset`` is a ``FiniteSet`` or an ``Interval`` or ``ImageSet`` of the solutions. >>> solveset(x**2 - x, x) {0, 1} >>> solveset(x - x, x, domain=S.Reals) ℝ >>> solveset(sin(x) - 1, x, domain=S.Reals) ⎧ π │ ⎫ ⎨2⋅n⋅π + ─ │ n ∊ ℤ⎬ ⎩ 2 │ ⎭ If there are no solutions, an ``EmptySet`` is returned and if it is not able to find solutions then a ``ConditionSet`` is returned. >>> solveset(exp(x), x) # No solution exists ∅ >>> solveset(cos(x) - x, x) # Not able to find solution {x │ x ∊ ℂ ∧ (-x + cos(x) = 0)} In the ``solveset`` module, the linear system of equations is solved using ``linsolve``. In future we would be able to use linsolve directly from ``solveset``. Following is an example of the syntax of ``linsolve``. * List of Equations Form: >>> linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z)) {(-y - 1, y, 2)} * Augmented Matrix Form: >>> linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z)) {(-y - 1, y, 2)} * A*x = b Form >>> M = Matrix(((1, 1, 1, 1), (1, 1, 2, 3))) >>> system = A, b = M[:, :-1], M[:, -1] >>> linsolve(system, x, y, z) {(-y - 1, y, 2)} .. note:: The order of solution corresponds the order of given symbols. In the ``solveset`` module, the non linear system of equations is solved using ``nonlinsolve``. Following are examples of ``nonlinsolve``. 1. When only real solution is present: >>> a, b, c, d = symbols('a, b, c, d', real=True) >>> nonlinsolve([a**2 + a, a - b], [a, b]) {(-1, -1), (0, 0)} >>> nonlinsolve([x*y - 1, x - 2], x, y) {(2, 1/2)} 2. When only complex solution is present: >>> nonlinsolve([x**2 + 1, y**2 + 1], [x, y]) {(-ⅈ, -ⅈ), (-ⅈ, ⅈ), (ⅈ, -ⅈ), (ⅈ, ⅈ)} 3. When both real and complex solution are present: >>> from sympy import sqrt >>> system = [x**2 - 2*y**2 -2, x*y - 2] >>> vars = [x, y] >>> nonlinsolve(system, vars) {(-2, -1), (2, 1), (-√2⋅ⅈ, √2⋅ⅈ), (√2⋅ⅈ, -√2⋅ⅈ)} >>> system = [exp(x) - sin(y), 1/y - 3] >>> nonlinsolve(system, vars) {({2⋅n⋅ⅈ⋅π + log(sin(1/3)) │ n ∊ ℤ}, 1/3)} 4. When the system is positive-dimensional system (has infinitely many solutions): >>> nonlinsolve([x*y, x*y - x], [x, y]) {(0, y)} >>> system = [a**2 + a*c, a - b] >>> nonlinsolve(system, [a, b]) {(0, 0), (-c, -c)} .. note:: 1. The order of solution corresponds the order of given symbols. 2. Currently ``nonlinsolve`` doesn't return solution in form of ``LambertW`` (if there is solution present in the form of ``LambertW``). ``solve`` can be used for such cases: >>> solve([x**2 - y**2/exp(x)], [x, y], dict=True) ⎡⎧ ____⎫ ⎧ ____⎫⎤ ⎢⎨ ╱ x ⎬ ⎨ ╱ x ⎬⎥ ⎣⎩y: -x⋅╲╱ ℯ ⎭, ⎩y: x⋅╲╱ ℯ ⎭⎦ >>> solve(x**2 - y**2/exp(x), x, dict=True) ⎡⎧ ⎛-y ⎞⎫ ⎧ ⎛y⎞⎫⎤ ⎢⎨x: 2⋅W⎜───⎟⎬, ⎨x: 2⋅W⎜─⎟⎬⎥ ⎣⎩ ⎝ 2 ⎠⎭ ⎩ ⎝2⎠⎭⎦ 3. Currently ``nonlinsolve`` is not properly capable of solving the system of equations having trigonometric functions. ``solve`` can be used for such cases (but does not give all solution): >>> solve([sin(x + y), cos(x - y)], [x, y]) ⎡⎛-3⋅π 3⋅π⎞ ⎛-π π⎞ ⎛π 3⋅π⎞ ⎛3⋅π π⎞⎤ ⎢⎜─────, ───⎟, ⎜───, ─⎟, ⎜─, ───⎟, ⎜───, ─⎟⎥ ⎣⎝ 4 4 ⎠ ⎝ 4 4⎠ ⎝4 4 ⎠ ⎝ 4 4⎠⎦ .. _tutorial-roots: ``solveset`` reports each solution only once. To get the solutions of a polynomial including multiplicity use ``roots``. >>> solveset(x**3 - 6*x**2 + 9*x, x) {0, 3} >>> roots(x**3 - 6*x**2 + 9*x, x) {0: 1, 3: 2} The output ``{0: 1, 3: 2}`` of ``roots`` means that ``0`` is a root of multiplicity 1 and ``3`` is a root of multiplicity 2. .. note:: Currently ``solveset`` is not capable of solving the following types of equations: * Equations solvable by LambertW (Transcendental equation solver). ``solve`` can be used for such cases: >>> solve(x*exp(x) - 1, x ) [W(1)] .. _tutorial-dsolve: Solving Differential Equations ============================== To solve differential equations, use ``dsolve``. First, create an undefined function by passing ``cls=Function`` to the ``symbols`` function. >>> f, g = symbols('f g', cls=Function) ``f`` and ``g`` are now undefined functions. We can call ``f(x)``, and it will represent an unknown function. >>> f(x) f(x) Derivatives of ``f(x)`` are unevaluated. >>> f(x).diff(x) d ──(f(x)) dx (see the :ref:`Derivatives ` section for more on derivatives). To represent the differential equation `f''(x) - 2f'(x) + f(x) = \sin(x)`, we would thus use >>> diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)) >>> diffeq 2 d d f(x) - 2⋅──(f(x)) + ───(f(x)) = sin(x) dx 2 dx To solve the ODE, pass it and the function to solve for to ``dsolve``. >>> dsolve(diffeq, f(x)) x cos(x) f(x) = (C₁ + C₂⋅x)⋅ℯ + ────── 2 ``dsolve`` returns an instance of ``Eq``. This is because in general, solutions to differential equations cannot be solved explicitly for the function. >>> dsolve(f(x).diff(x)*(1 - sin(f(x))) - 1, f(x)) x - f(x) - cos(f(x)) = C₁ The arbitrary constants in the solutions from dsolve are symbols of the form ``C1``, ``C2``, ``C3``, and so on.