Matrices
Known matrices related to physics
- sympy.physics.matrices.mdft(n)[source]
Deprecated since version 1.9: Use DFT from sympy.matrices.expressions.fourier instead.
To get identical behavior to
mdft(n)
, useDFT(n).as_explicit()
.
- sympy.physics.matrices.mgamma(mu, lower=False)[source]
Returns a Dirac gamma matrix \(\gamma^\mu\) in the standard (Dirac) representation.
Explanation
If you want \(\gamma_\mu\), use
gamma(mu, True)
.We use a convention:
\(\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3\)
\(\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5\)
Examples
>>> from sympy.physics.matrices import mgamma >>> mgamma(1) Matrix([ [ 0, 0, 0, 1], [ 0, 0, 1, 0], [ 0, -1, 0, 0], [-1, 0, 0, 0]])
References
- sympy.physics.matrices.msigma(i)[source]
Returns a Pauli matrix \(\sigma_i\) with
i=1,2,3
.Examples
>>> from sympy.physics.matrices import msigma >>> msigma(1) Matrix([ [0, 1], [1, 0]])
References
- sympy.physics.matrices.pat_matrix(m, dx, dy, dz)[source]
Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of \((dx, dy, dz)\) for a body of mass m.
Examples
To translate a body having a mass of 2 units a distance of 1 unit along the \(x\)-axis we get:
>>> from sympy.physics.matrices import pat_matrix >>> pat_matrix(2, 1, 0, 0) Matrix([ [0, 0, 0], [0, 2, 0], [0, 0, 2]])