Printing
See the Printing section in tutorial for introduction into printing.
This guide documents the printing system in SymPy and how it works internally.
Printer Class
Printing subsystem driver
SymPy’s printing system works the following way: Any expression can be passed to a designated Printer who then is responsible to return an adequate representation of that expression.
The basic concept is the following:
Let the object print itself if it knows how.
Take the best fitting method defined in the printer.
As fall-back use the emptyPrinter method for the printer.
Which Method is Responsible for Printing?
The whole printing process is started by calling .doprint(expr)
on the printer
which you want to use. This method looks for an appropriate method which can
print the given expression in the given style that the printer defines.
While looking for the method, it follows these steps:
Let the object print itself if it knows how.
The printer looks for a specific method in every object. The name of that method depends on the specific printer and is defined under
Printer.printmethod
. For example, StrPrinter calls_sympystr
and LatexPrinter calls_latex
. Look at the documentation of the printer that you want to use. The name of the method is specified there.This was the original way of doing printing in sympy. Every class had its own latex, mathml, str and repr methods, but it turned out that it is hard to produce a high quality printer, if all the methods are spread out that far. Therefore all printing code was combined into the different printers, which works great for built-in SymPy objects, but not that good for user defined classes where it is inconvenient to patch the printers.
Take the best fitting method defined in the printer.
The printer loops through expr classes (class + its bases), and tries to dispatch the work to
_print_<EXPR_CLASS>
e.g., suppose we have the following class hierarchy:
Basic | Atom | Number | Rational
then, for
expr=Rational(...)
, the Printer will try to call printer methods in the order as shown in the figure below:p._print(expr) | |-- p._print_Rational(expr) | |-- p._print_Number(expr) | |-- p._print_Atom(expr) | `-- p._print_Basic(expr)
if
._print_Rational
method exists in the printer, then it is called, and the result is returned back. Otherwise, the printer tries to call._print_Number
and so on.As a fall-back use the emptyPrinter method for the printer.
As fall-back
self.emptyPrinter
will be called with the expression. If not defined in the Printer subclass this will be the same asstr(expr)
.
Example of Custom Printer
In the example below, we have a printer which prints the derivative of a function in a shorter form.
from sympy.core.symbol import Symbol
from sympy.printing.latex import LatexPrinter, print_latex
from sympy.core.function import UndefinedFunction, Function
class MyLatexPrinter(LatexPrinter):
"""Print derivative of a function of symbols in a shorter form.
"""
def _print_Derivative(self, expr):
function, *vars = expr.args
if not isinstance(type(function), UndefinedFunction) or \
not all(isinstance(i, Symbol) for i in vars):
return super()._print_Derivative(expr)
# If you want the printer to work correctly for nested
# expressions then use self._print() instead of str() or latex().
# See the example of nested modulo below in the custom printing
# method section.
return "{}_{{{}}}".format(
self._print(Symbol(function.func.__name__)),
''.join(self._print(i) for i in vars))
def print_my_latex(expr):
""" Most of the printers define their own wrappers for print().
These wrappers usually take printer settings. Our printer does not have
any settings.
"""
print(MyLatexPrinter().doprint(expr))
y = Symbol("y")
x = Symbol("x")
f = Function("f")
expr = f(x, y).diff(x, y)
# Print the expression using the normal latex printer and our custom
# printer.
print_latex(expr)
print_my_latex(expr)
The output of the code above is:
\frac{\partial^{2}}{\partial x\partial y} f{\left(x,y \right)}
f_{xy}
Example of Custom Printing Method
In the example below, the latex printing of the modulo operator is modified.
This is done by overriding the method _latex
of Mod
.
>>> from sympy import Symbol, Mod, Integer, print_latex
>>> # Always use printer._print()
>>> class ModOp(Mod):
... def _latex(self, printer):
... a, b = [printer._print(i) for i in self.args]
... return r"\operatorname{Mod}{\left(%s, %s\right)}" % (a, b)
Comparing the output of our custom operator to the builtin one:
>>> x = Symbol('x')
>>> m = Symbol('m')
>>> print_latex(Mod(x, m))
x \bmod m
>>> print_latex(ModOp(x, m))
\operatorname{Mod}{\left(x, m\right)}
Common mistakes
It’s important to always use self._print(obj)
to print subcomponents of
an expression when customizing a printer. Mistakes include:
Using
self.doprint(obj)
instead:>>> # This example does not work properly, as only the outermost call may use >>> # doprint. >>> class ModOpModeWrong(Mod): ... def _latex(self, printer): ... a, b = [printer.doprint(i) for i in self.args] ... return r"\operatorname{Mod}{\left(%s, %s\right)}" % (a, b)
This fails when the \(mode\) argument is passed to the printer:
>>> print_latex(ModOp(x, m), mode='inline') # ok $\operatorname{Mod}{\left(x, m\right)}$ >>> print_latex(ModOpModeWrong(x, m), mode='inline') # bad $\operatorname{Mod}{\left($x$, $m$\right)}$
Using
str(obj)
instead:>>> class ModOpNestedWrong(Mod): ... def _latex(self, printer): ... a, b = [str(i) for i in self.args] ... return r"\operatorname{Mod}{\left(%s, %s\right)}" % (a, b)
This fails on nested objects:
>>> # Nested modulo. >>> print_latex(ModOp(ModOp(x, m), Integer(7))) # ok \operatorname{Mod}{\left(\operatorname{Mod}{\left(x, m\right)}, 7\right)} >>> print_latex(ModOpNestedWrong(ModOpNestedWrong(x, m), Integer(7))) # bad \operatorname{Mod}{\left(ModOpNestedWrong(x, m), 7\right)}
Using
LatexPrinter()._print(obj)
instead.>>> from sympy.printing.latex import LatexPrinter >>> class ModOpSettingsWrong(Mod): ... def _latex(self, printer): ... a, b = [LatexPrinter()._print(i) for i in self.args] ... return r"\operatorname{Mod}{\left(%s, %s\right)}" % (a, b)
This causes all the settings to be discarded in the subobjects. As an example, the
full_prec
setting which shows floats to full precision is ignored:>>> from sympy import Float >>> print_latex(ModOp(Float(1) * x, m), full_prec=True) # ok \operatorname{Mod}{\left(1.00000000000000 x, m\right)} >>> print_latex(ModOpSettingsWrong(Float(1) * x, m), full_prec=True) # bad \operatorname{Mod}{\left(1.0 x, m\right)}
The main class responsible for printing is Printer
(see also its
source code):
- class sympy.printing.printer.Printer(settings=None)[source]
Generic printer
Its job is to provide infrastructure for implementing new printers easily.
If you want to define your custom Printer or your custom printing method for your custom class then see the example above: printer_example .
- printmethod: str = None
PrettyPrinter Class
The pretty printing subsystem is implemented in sympy.printing.pretty.pretty
by the PrettyPrinter
class deriving from Printer
. It relies on
the modules sympy.printing.pretty.stringPict
, and
sympy.printing.pretty.pretty_symbology
for rendering nice-looking
formulas.
The module stringPict
provides a base class stringPict
and a derived
class prettyForm
that ease the creation and manipulation of formulas
that span across multiple lines.
The module pretty_symbology
provides primitives to construct 2D shapes
(hline, vline, etc) together with a technique to use unicode automatically
when possible.
- class sympy.printing.pretty.pretty.PrettyPrinter(settings=None)[source]
Printer, which converts an expression into 2D ASCII-art figure.
- printmethod: str = '_pretty'
- sympy.printing.pretty.pretty.pretty(expr, *, order=None, full_prec='auto', use_unicode=True, wrap_line=False, num_columns=None, use_unicode_sqrt_char=True, root_notation=True, mat_symbol_style='plain', imaginary_unit='i', perm_cyclic=True)[source]
Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
- sympy.printing.pretty.pretty.pretty_print(expr, **kwargs)[source]
Prints expr in pretty form.
pprint is just a shortcut for this function.
- Parameters
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of the string pi.
full_prec : bool or string, optional (default=”auto”)
Use full precision.
order : bool or string, optional (default=None)
Set to ‘none’ for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to ‘False’ for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form.
mat_symbol_style : string, optional (default=”plain”)
Set to “bold” for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used.
imaginary_unit : string, optional (default=”i”)
Letter to use for imaginary unit when use_unicode is True. Can be “i” (default) or “j”.
C code printers
This class implements C code printing, i.e. it converts Python expressions
to strings of C code (see also C89CodePrinter
).
Usage:
>>> from sympy.printing import print_ccode
>>> from sympy.functions import sin, cos, Abs, gamma
>>> from sympy.abc import x
>>> print_ccode(sin(x)**2 + cos(x)**2, standard='C89')
pow(sin(x), 2) + pow(cos(x), 2)
>>> print_ccode(2*x + cos(x), assign_to="result", standard='C89')
result = 2*x + cos(x);
>>> print_ccode(Abs(x**2), standard='C89')
fabs(pow(x, 2))
>>> print_ccode(gamma(x**2), standard='C99')
tgamma(pow(x, 2))
- sympy.printing.c.known_functions_C89 = {'Abs': [(<function <lambda>>, 'fabs'), (<function <lambda>>, 'abs')], 'acos': 'acos', 'asin': 'asin', 'atan': 'atan', 'atan2': 'atan2', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'exp': 'exp', 'floor': 'floor', 'log': 'log', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh'}
- sympy.printing.c.known_functions_C99 = {'Abs': [(<function <lambda>>, 'fabs'), (<function <lambda>>, 'abs')], 'Cbrt': 'cbrt', 'Max': 'fmax', 'Min': 'fmin', 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'exp2': 'exp2', 'expm1': 'expm1', 'floor': 'floor', 'fma': 'fma', 'gamma': 'tgamma', 'hypot': 'hypot', 'log': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'loggamma': 'lgamma', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh'}
- class sympy.printing.c.C89CodePrinter(settings=None)[source]
A printer to convert Python expressions to strings of C code
- printmethod: str = '_ccode'
- sympy.printing.c.ccode(expr, assign_to=None, standard='c99', **settings)[source]
Converts an expr to a string of c code
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.standard : str, optional
String specifying the standard. If your compiler supports a more modern standard you may set this to ‘c99’ to allow the printer to use more math functions. [default=’c89’].
precision : integer, optional
The precision for numbers such as pi [default=17].
user_functions : dict, optional
A dictionary where the keys are string representations of either
FunctionClass
orUndefinedFunction
instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples.dereference : iterable, optional
An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if
dereference=[a]
, the resulting code would print(*a)
instead ofa
.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].
Examples
>>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> expr = (2*tau)**Rational(7, 2) >>> ccode(expr) '8*M_SQRT2*pow(tau, 7.0/2.0)' >>> ccode(expr, math_macros={}) '8*sqrt(2)*pow(tau, 7.0/2.0)' >>> ccode(sin(x), assign_to="s") 's = sin(x);' >>> from sympy.codegen.ast import real, float80 >>> ccode(expr, type_aliases={real: float80}) '8*M_SQRT2l*powl(tau, 7.0L/2.0L)'
Simple custom printing can be defined for certain types by passing a dictionary of {“type” : “function”} to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].>>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions) 'f(fabs(x) + CEIL(x))'
or if the C-function takes a subset of the original arguments:
>>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)'
Piecewise
expressions are converted into conditionals. If anassign_to
variable is provided an if statement is created, otherwise the ternary operator is used. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(ccode(expr, tau, standard='C89')) if (x > 0) { tau = x + 1; } else { tau = x; }
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89') 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a
MatrixSymbol
of the same dimensions must be provided toassign_to
. Note that any expression that can be generated normally can also exist inside a Matrix:>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(ccode(mat, A, standard='C89')) A[0] = pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = sin(x);
C++ code printers
This module contains printers for C++ code, i.e. functions to convert SymPy expressions to strings of C++ code.
Usage:
>>> from sympy.printing import cxxcode
>>> from sympy.functions import Min, gamma
>>> from sympy.abc import x
>>> print(cxxcode(Min(gamma(x) - 1, x), standard='C++11'))
std::min(x, std::tgamma(x) - 1)
RCodePrinter
This class implements R code printing (i.e. it converts Python expressions to strings of R code).
Usage:
>>> from sympy.printing import print_rcode
>>> from sympy.functions import sin, cos, Abs
>>> from sympy.abc import x
>>> print_rcode(sin(x)**2 + cos(x)**2)
sin(x)^2 + cos(x)^2
>>> print_rcode(2*x + cos(x), assign_to="result")
result = 2*x + cos(x);
>>> print_rcode(Abs(x**2))
abs(x^2)
- sympy.printing.rcode.known_functions = {'Abs': 'abs', 'Max': 'max', 'Min': 'min', 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'beta': 'beta', 'ceiling': 'ceiling', 'cos': 'cos', 'cosh': 'cosh', 'digamma': 'digamma', 'erf': 'erf', 'exp': 'exp', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'log': 'log', 'sign': 'sign', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh', 'trigamma': 'trigamma'}
- class sympy.printing.rcode.RCodePrinter(settings={})[source]
A printer to convert SymPy expressions to strings of R code
- printmethod: str = '_rcode'
- sympy.printing.rcode.rcode(expr, assign_to=None, **settings)[source]
Converts an expr to a string of r code
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.precision : integer, optional
The precision for numbers such as pi [default=15].
user_functions : dict, optional
A dictionary where the keys are string representations of either
FunctionClass
orUndefinedFunction
instances and the values are their desired R string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, rfunction_string)] or [(argument_test, rfunction_formater)]. See below for examples.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].
Examples
>>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> rcode((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau^(7.0/2.0)' >>> rcode(sin(x), assign_to="s") 's = sin(x);'
Simple custom printing can be defined for certain types by passing a dictionary of {“type” : “function”} to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].>>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions) 'f(fabs(x) + CEIL(x))'
or if the R-function takes a subset of the original arguments:
>>> rcode(2**x + 3**x, user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)'
Piecewise
expressions are converted into conditionals. If anassign_to
variable is provided an if statement is created, otherwise the ternary operator is used. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(rcode(expr, assign_to=tau)) tau = ifelse(x > 0,x + 1,x);
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> rcode(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a
MatrixSymbol
of the same dimensions must be provided toassign_to
. Note that any expression that can be generated normally can also exist inside a Matrix:>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(rcode(mat, A)) A[0] = x^2; A[1] = ifelse(x > 0,x + 1,x); A[2] = sin(x);
Fortran Printing
The fcode
function translates a sympy expression into Fortran code. The main
purpose is to take away the burden of manually translating long mathematical
expressions. Therefore the resulting expression should also require no (or
very little) manual tweaking to make it compilable. The optional arguments
of fcode
can be used to fine-tune the behavior of fcode
in such a way
that manual changes in the result are no longer needed.
- sympy.printing.fortran.fcode(expr, assign_to=None, **settings)[source]
Converts an expr to a string of fortran code
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.precision : integer, optional
DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17].
user_functions : dict, optional
A dictionary where keys are
FunctionClass
instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].source_format : optional
The source format can be either ‘fixed’ or ‘free’. [default=’fixed’]
standard : integer, optional
The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added.
name_mangling : bool, optional
If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of
_
at the end. If False, SymPy Will not interfere with naming of variables. [default=True]
Examples
>>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)'
Custom printing can be defined for certain types by passing a dictionary of “type” : “function” to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].>>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)'
Piecewise
expressions are converted into conditionals. If anassign_to
variable is provided an if statement is created, otherwise the ternary operator is used. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'
Matrices are also supported, but a
MatrixSymbol
of the same dimensions must be provided toassign_to
. Note that any expression that can be generated normally can also exist inside a Matrix:>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x)
- sympy.printing.fortran.print_fcode(expr, **settings)[source]
Prints the Fortran representation of the given expression.
See fcode for the meaning of the optional arguments.
- class sympy.printing.fortran.FCodePrinter(settings=None)[source]
A printer to convert SymPy expressions to strings of Fortran code
- printmethod: str = '_fcode'
Two basic examples:
>>> from sympy import *
>>> x = symbols("x")
>>> fcode(sqrt(1-x**2))
' sqrt(1 - x**2)'
>>> fcode((3 + 4*I)/(1 - conjugate(x)))
' (cmplx(3,4))/(1 - conjg(x))'
An example where line wrapping is required:
>>> expr = sqrt(1-x**2).series(x,n=20).removeO()
>>> print(fcode(expr))
-715.0d0/65536.0d0*x**18 - 429.0d0/32768.0d0*x**16 - 33.0d0/
@ 2048.0d0*x**14 - 21.0d0/1024.0d0*x**12 - 7.0d0/256.0d0*x**10 -
@ 5.0d0/128.0d0*x**8 - 1.0d0/16.0d0*x**6 - 1.0d0/8.0d0*x**4 - 1.0d0
@ /2.0d0*x**2 + 1
In case of line wrapping, it is handy to include the assignment so that lines are wrapped properly when the assignment part is added.
>>> print(fcode(expr, assign_to="var"))
var = -715.0d0/65536.0d0*x**18 - 429.0d0/32768.0d0*x**16 - 33.0d0/
@ 2048.0d0*x**14 - 21.0d0/1024.0d0*x**12 - 7.0d0/256.0d0*x**10 -
@ 5.0d0/128.0d0*x**8 - 1.0d0/16.0d0*x**6 - 1.0d0/8.0d0*x**4 - 1.0d0
@ /2.0d0*x**2 + 1
For piecewise functions, the assign_to
option is mandatory:
>>> print(fcode(Piecewise((x,x<1),(x**2,True)), assign_to="var"))
if (x < 1) then
var = x
else
var = x**2
end if
Note that by default only top-level piecewise functions are supported due to
the lack of a conditional operator in Fortran 77. Inline conditionals can be
supported using the merge
function introduced in Fortran 95 by setting of
the kwarg standard=95
:
>>> print(fcode(Piecewise((x,x<1),(x**2,True)), standard=95))
merge(x, x**2, x < 1)
Loops are generated if there are Indexed objects in the expression. This also requires use of the assign_to option.
>>> A, B = map(IndexedBase, ['A', 'B'])
>>> m = Symbol('m', integer=True)
>>> i = Idx('i', m)
>>> print(fcode(2*B[i], assign_to=A[i]))
do i = 1, m
A(i) = 2*B(i)
end do
Repeated indices in an expression with Indexed objects are interpreted as summation. For instance, code for the trace of a matrix can be generated with
>>> print(fcode(A[i, i], assign_to=x))
x = 0
do i = 1, m
x = x + A(i, i)
end do
By default, number symbols such as pi
and E
are detected and defined as
Fortran parameters. The precision of the constants can be tuned with the
precision argument. Parameter definitions are easily avoided using the N
function.
>>> print(fcode(x - pi**2 - E))
parameter (E = 2.7182818284590452d0)
parameter (pi = 3.1415926535897932d0)
x - pi**2 - E
>>> print(fcode(x - pi**2 - E, precision=25))
parameter (E = 2.718281828459045235360287d0)
parameter (pi = 3.141592653589793238462643d0)
x - pi**2 - E
>>> print(fcode(N(x - pi**2, 25)))
x - 9.869604401089358618834491d0
When some functions are not part of the Fortran standard, it might be desirable to introduce the names of user-defined functions in the Fortran expression.
>>> print(fcode(1 - gamma(x)**2, user_functions={'gamma': 'mygamma'}))
1 - mygamma(x)**2
However, when the user_functions argument is not provided, fcode
will
generate code which assumes that a function of the same name will be provided
by the user. A comment will be added to inform the user of the issue:
>>> print(fcode(1 - gamma(x)**2))
C Not supported in Fortran:
C gamma
1 - gamma(x)**2
The printer can be configured to omit these comments:
>>> print(fcode(1 - gamma(x)**2, allow_unknown_functions=True))
1 - gamma(x)**2
By default the output is human readable code, ready for copy and paste. With the
option human=False
, the return value is suitable for post-processing with
source code generators that write routines with multiple instructions. The
return value is a three-tuple containing: (i) a set of number symbols that must
be defined as ‘Fortran parameters’, (ii) a list functions that cannot be
translated in pure Fortran and (iii) a string of Fortran code. A few examples:
>>> fcode(1 - gamma(x)**2, human=False)
(set(), {gamma(x)}, ' 1 - gamma(x)**2')
>>> fcode(1 - sin(x)**2, human=False)
(set(), set(), ' 1 - sin(x)**2')
>>> fcode(x - pi**2, human=False)
({(pi, '3.1415926535897932d0')}, set(), ' x - pi**2')
Mathematica code printing
- sympy.printing.mathematica.known_functions = {'Chi': [(<function <lambda>>, 'CoshIntegral')], 'Ci': [(<function <lambda>>, 'CosIntegral')], 'DiracDelta': [(<function <lambda>>, 'DiracDelta')], 'Ei': [(<function <lambda>>, 'ExpIntegralEi')], 'FallingFactorial': [(<function <lambda>>, 'FactorialPower')], 'Heaviside': [(<function <lambda>>, 'HeavisideTheta')], 'KroneckerDelta': [(<function <lambda>>, 'KroneckerDelta')], 'Max': [(<function <lambda>>, 'Max')], 'Min': [(<function <lambda>>, 'Min')], 'RisingFactorial': [(<function <lambda>>, 'Pochhammer')], 'Shi': [(<function <lambda>>, 'SinhIntegral')], 'Si': [(<function <lambda>>, 'SinIntegral')], 'acos': [(<function <lambda>>, 'ArcCos')], 'acosh': [(<function <lambda>>, 'ArcCosh')], 'acot': [(<function <lambda>>, 'ArcCot')], 'acoth': [(<function <lambda>>, 'ArcCoth')], 'acsc': [(<function <lambda>>, 'ArcCsc')], 'acsch': [(<function <lambda>>, 'ArcCsch')], 'airyai': [(<function <lambda>>, 'AiryAi')], 'airyaiprime': [(<function <lambda>>, 'AiryAiPrime')], 'airybi': [(<function <lambda>>, 'AiryBi')], 'airybiprime': [(<function <lambda>>, 'AiryBiPrime')], 'appellf1': [(<function <lambda>>, 'AppellF1')], 'asec': [(<function <lambda>>, 'ArcSec')], 'asech': [(<function <lambda>>, 'ArcSech')], 'asin': [(<function <lambda>>, 'ArcSin')], 'asinh': [(<function <lambda>>, 'ArcSinh')], 'assoc_laguerre': [(<function <lambda>>, 'LaguerreL')], 'assoc_legendre': [(<function <lambda>>, 'LegendreP')], 'atan': [(<function <lambda>>, 'ArcTan')], 'atan2': [(<function <lambda>>, 'ArcTan')], 'atanh': [(<function <lambda>>, 'ArcTanh')], 'besseli': [(<function <lambda>>, 'BesselI')], 'besselj': [(<function <lambda>>, 'BesselJ')], 'besselk': [(<function <lambda>>, 'BesselK')], 'bessely': [(<function <lambda>>, 'BesselY')], 'beta': [(<function <lambda>>, 'Beta')], 'catalan': [(<function <lambda>>, 'CatalanNumber')], 'chebyshevt': [(<function <lambda>>, 'ChebyshevT')], 'chebyshevu': [(<function <lambda>>, 'ChebyshevU')], 'conjugate': [(<function <lambda>>, 'Conjugate')], 'cos': [(<function <lambda>>, 'Cos')], 'cosh': [(<function <lambda>>, 'Cosh')], 'cot': [(<function <lambda>>, 'Cot')], 'coth': [(<function <lambda>>, 'Coth')], 'csc': [(<function <lambda>>, 'Csc')], 'csch': [(<function <lambda>>, 'Csch')], 'dirichlet_eta': [(<function <lambda>>, 'DirichletEta')], 'elliptic_e': [(<function <lambda>>, 'EllipticE')], 'elliptic_f': [(<function <lambda>>, 'EllipticE')], 'elliptic_k': [(<function <lambda>>, 'EllipticK')], 'elliptic_pi': [(<function <lambda>>, 'EllipticPi')], 'erf': [(<function <lambda>>, 'Erf')], 'erf2': [(<function <lambda>>, 'Erf')], 'erf2inv': [(<function <lambda>>, 'InverseErf')], 'erfc': [(<function <lambda>>, 'Erfc')], 'erfcinv': [(<function <lambda>>, 'InverseErfc')], 'erfi': [(<function <lambda>>, 'Erfi')], 'erfinv': [(<function <lambda>>, 'InverseErf')], 'exp': [(<function <lambda>>, 'Exp')], 'expint': [(<function <lambda>>, 'ExpIntegralE')], 'factorial': [(<function <lambda>>, 'Factorial')], 'factorial2': [(<function <lambda>>, 'Factorial2')], 'fresnelc': [(<function <lambda>>, 'FresnelC')], 'fresnels': [(<function <lambda>>, 'FresnelS')], 'gamma': [(<function <lambda>>, 'Gamma')], 'gcd': [(<function <lambda>>, 'GCD')], 'gegenbauer': [(<function <lambda>>, 'GegenbauerC')], 'hankel1': [(<function <lambda>>, 'HankelH1')], 'hankel2': [(<function <lambda>>, 'HankelH2')], 'harmonic': [(<function <lambda>>, 'HarmonicNumber')], 'hermite': [(<function <lambda>>, 'HermiteH')], 'hyper': [(<function <lambda>>, 'HypergeometricPFQ')], 'jacobi': [(<function <lambda>>, 'JacobiP')], 'jn': [(<function <lambda>>, 'SphericalBesselJ')], 'laguerre': [(<function <lambda>>, 'LaguerreL')], 'lcm': [(<function <lambda>>, 'LCM')], 'legendre': [(<function <lambda>>, 'LegendreP')], 'lerchphi': [(<function <lambda>>, 'LerchPhi')], 'li': [(<function <lambda>>, 'LogIntegral')], 'log': [(<function <lambda>>, 'Log')], 'loggamma': [(<function <lambda>>, 'LogGamma')], 'lucas': [(<function <lambda>>, 'LucasL')], 'mathieuc': [(<function <lambda>>, 'MathieuC')], 'mathieucprime': [(<function <lambda>>, 'MathieuCPrime')], 'mathieus': [(<function <lambda>>, 'MathieuS')], 'mathieusprime': [(<function <lambda>>, 'MathieuSPrime')], 'meijerg': [(<function <lambda>>, 'MeijerG')], 'polygamma': [(<function <lambda>>, 'PolyGamma')], 'polylog': [(<function <lambda>>, 'PolyLog')], 'riemann_xi': [(<function <lambda>>, 'RiemannXi')], 'sec': [(<function <lambda>>, 'Sec')], 'sech': [(<function <lambda>>, 'Sech')], 'sin': [(<function <lambda>>, 'Sin')], 'sinc': [(<function <lambda>>, 'Sinc')], 'sinh': [(<function <lambda>>, 'Sinh')], 'sqrt': [(<function <lambda>>, 'Sqrt')], 'stieltjes': [(<function <lambda>>, 'StieltjesGamma')], 'subfactorial': [(<function <lambda>>, 'Subfactorial')], 'tan': [(<function <lambda>>, 'Tan')], 'tanh': [(<function <lambda>>, 'Tanh')], 'uppergamma': [(<function <lambda>>, 'Gamma')], 'yn': [(<function <lambda>>, 'SphericalBesselY')], 'zeta': [(<function <lambda>>, 'Zeta')]}
Maple code printing
- class sympy.printing.maple.MapleCodePrinter(settings=None)[source]
Printer which converts a SymPy expression into a maple code.
- printmethod: str = '_maple'
- sympy.printing.maple.maple_code(expr, assign_to=None, **settings)[source]
Converts
expr
to a string of Maple code.- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This can be helpful for expressions that generate multi-line statements.precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are
FunctionClass
instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].inline: bool, optional
If True, we try to create single-statement code instead of multiple statements. [default=True].
- sympy.printing.maple.print_maple_code(expr, **settings)[source]
Prints the Maple representation of the given expression.
See
maple_code()
for the meaning of the optional arguments.Examples
>>> from sympy import print_maple_code, symbols >>> x, y = symbols('x y') >>> print_maple_code(x, assign_to=y) y := x
Javascript Code printing
- sympy.printing.jscode.known_functions = {'Abs': 'Math.abs', 'Max': 'Math.max', 'Min': 'Math.min', 'acos': 'Math.acos', 'acosh': 'Math.acosh', 'asin': 'Math.asin', 'asinh': 'Math.asinh', 'atan': 'Math.atan', 'atan2': 'Math.atan2', 'atanh': 'Math.atanh', 'ceiling': 'Math.ceil', 'cos': 'Math.cos', 'cosh': 'Math.cosh', 'exp': 'Math.exp', 'floor': 'Math.floor', 'log': 'Math.log', 'sign': 'Math.sign', 'sin': 'Math.sin', 'sinh': 'Math.sinh', 'tan': 'Math.tan', 'tanh': 'Math.tanh'}
- class sympy.printing.jscode.JavascriptCodePrinter(settings={})[source]
“A Printer to convert Python expressions to strings of JavaScript code
- printmethod: str = '_javascript'
- sympy.printing.jscode.jscode(expr, assign_to=None, **settings)[source]
Converts an expr to a string of javascript code
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.precision : integer, optional
The precision for numbers such as pi [default=15].
user_functions : dict, optional
A dictionary where keys are
FunctionClass
instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. See below for examples.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].
Examples
>>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs >>> x, tau = symbols("x, tau") >>> jscode((2*tau)**Rational(7, 2)) '8*Math.sqrt(2)*Math.pow(tau, 7/2)' >>> jscode(sin(x), assign_to="s") 's = Math.sin(x);'
Custom printing can be defined for certain types by passing a dictionary of “type” : “function” to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)].>>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")] ... } >>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions) 'fabs(x) + CEIL(x)'
Piecewise
expressions are converted into conditionals. If anassign_to
variable is provided an if statement is created, otherwise the ternary operator is used. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(jscode(expr, tau)) if (x > 0) { tau = x + 1; } else { tau = x; }
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> jscode(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a
MatrixSymbol
of the same dimensions must be provided toassign_to
. Note that any expression that can be generated normally can also exist inside a Matrix:>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(jscode(mat, A)) A[0] = Math.pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = Math.sin(x);
Julia code printing
- sympy.printing.julia.known_fcns_src1 = ['sin', 'cos', 'tan', 'cot', 'sec', 'csc', 'asin', 'acos', 'atan', 'acot', 'asec', 'acsc', 'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch', 'sinc', 'atan2', 'sign', 'floor', 'log', 'exp', 'cbrt', 'sqrt', 'erf', 'erfc', 'erfi', 'factorial', 'gamma', 'digamma', 'trigamma', 'polygamma', 'beta', 'airyai', 'airyaiprime', 'airybi', 'airybiprime', 'besselj', 'bessely', 'besseli', 'besselk', 'erfinv', 'erfcinv']
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
- sympy.printing.julia.known_fcns_src2 = {'Abs': 'abs', 'ceiling': 'ceil', 'conjugate': 'conj', 'hankel1': 'hankelh1', 'hankel2': 'hankelh2', 'im': 'imag', 're': 'real'}
- class sympy.printing.julia.JuliaCodePrinter(settings={})[source]
A printer to convert expressions to strings of Julia code.
- printmethod: str = '_julia'
- sympy.printing.julia.julia_code(expr, assign_to=None, **settings)[source]
Converts \(expr\) to a string of Julia code.
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This can be helpful for expressions that generate multi-line statements.precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are
FunctionClass
instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].inline: bool, optional
If True, we try to create single-statement code instead of multiple statements. [default=True].
Examples
>>> from sympy import julia_code, symbols, sin, pi >>> x = symbols('x') >>> julia_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x'
>>> from sympy import Rational, ceiling >>> x, y, tau = symbols("x, y, tau") >>> julia_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)'
Note that element-wise (Hadamard) operations are used by default between symbols. This is because its possible in Julia to write “vectorized” code. It is harmless if the values are scalars.
>>> julia_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y)'
If you need a matrix product “*” or matrix power “^”, you can specify the symbol as a
MatrixSymbol
.>>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> julia_code(3*pi*A**3) '(3*pi)*A^3'
This class uses several rules to decide which symbol to use a product. Pure numbers use “*”, Symbols use “.*” and MatrixSymbols use “*”. A HadamardProduct can be used to specify componentwise multiplication “.*” of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write “(x^2*y)*A^3”, we generate:
>>> julia_code(x**2*y*A**3) '(x.^2.*y)*A^3'
Matrices are supported using Julia inline notation. When using
assign_to
with matrices, the name can be specified either as a string or as aMatrixSymbol
. The dimensions must align in the latter case.>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> julia_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)]'
Piecewise
expressions are implemented with logical masking by default. Alternatively, you can pass “inline=False” to use if-else conditionals. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> julia_code(pw, assign_to=tau) 'tau = ((x > 0) ? (x + 1) : (x))'
Note that any expression that can be generated normally can also exist inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]]) >>> julia_code(mat, assign_to='A') 'A = [x.^2 ((x > 0) ? (x + 1) : (x)) sin(x)]'
Custom printing can be defined for certain types by passing a dictionary of “type” : “function” to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Julia function.>>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_julia_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> julia_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_julia_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> julia_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])./(t[i + 1] - t[i])'
Octave (and Matlab) Code printing
- sympy.printing.octave.known_fcns_src1 = ['sin', 'cos', 'tan', 'cot', 'sec', 'csc', 'asin', 'acos', 'acot', 'atan', 'atan2', 'asec', 'acsc', 'sinh', 'cosh', 'tanh', 'coth', 'csch', 'sech', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch', 'erfc', 'erfi', 'erf', 'erfinv', 'erfcinv', 'besseli', 'besselj', 'besselk', 'bessely', 'bernoulli', 'beta', 'euler', 'exp', 'factorial', 'floor', 'fresnelc', 'fresnels', 'gamma', 'harmonic', 'log', 'polylog', 'sign', 'zeta', 'legendre']
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
- sympy.printing.octave.known_fcns_src2 = {'Abs': 'abs', 'Chi': 'coshint', 'Ci': 'cosint', 'DiracDelta': 'dirac', 'Heaviside': 'heaviside', 'LambertW': 'lambertw', 'Max': 'max', 'Min': 'min', 'Mod': 'mod', 'RisingFactorial': 'pochhammer', 'Shi': 'sinhint', 'Si': 'sinint', 'arg': 'angle', 'binomial': 'bincoeff', 'ceiling': 'ceil', 'chebyshevt': 'chebyshevT', 'chebyshevu': 'chebyshevU', 'conjugate': 'conj', 'im': 'imag', 'laguerre': 'laguerreL', 'li': 'logint', 'loggamma': 'gammaln', 'polygamma': 'psi', 're': 'real'}
- class sympy.printing.octave.OctaveCodePrinter(settings={})[source]
A printer to convert expressions to strings of Octave/Matlab code.
- printmethod: str = '_octave'
- sympy.printing.octave.octave_code(expr, assign_to=None, **settings)[source]
Converts \(expr\) to a string of Octave (or Matlab) code.
The string uses a subset of the Octave language for Matlab compatibility.
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This can be helpful for expressions that generate multi-line statements.precision : integer, optional
The precision for numbers such as pi [default=16].
user_functions : dict, optional
A dictionary where keys are
FunctionClass
instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].inline: bool, optional
If True, we try to create single-statement code instead of multiple statements. [default=True].
Examples
>>> from sympy import octave_code, symbols, sin, pi >>> x = symbols('x') >>> octave_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x'
>>> from sympy import Rational, ceiling >>> x, y, tau = symbols("x, y, tau") >>> octave_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)'
Note that element-wise (Hadamard) operations are used by default between symbols. This is because its very common in Octave to write “vectorized” code. It is harmless if the values are scalars.
>>> octave_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y);'
If you need a matrix product “*” or matrix power “^”, you can specify the symbol as a
MatrixSymbol
.>>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> octave_code(3*pi*A**3) '(3*pi)*A^3'
This class uses several rules to decide which symbol to use a product. Pure numbers use “*”, Symbols use “.*” and MatrixSymbols use “*”. A HadamardProduct can be used to specify componentwise multiplication “.*” of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write “(x^2*y)*A^3”, we generate:
>>> octave_code(x**2*y*A**3) '(x.^2.*y)*A^3'
Matrices are supported using Octave inline notation. When using
assign_to
with matrices, the name can be specified either as a string or as aMatrixSymbol
. The dimensions must align in the latter case.>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)];'
Piecewise
expressions are implemented with logical masking by default. Alternatively, you can pass “inline=False” to use if-else conditionals. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> octave_code(pw, assign_to=tau) 'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));'
Note that any expression that can be generated normally can also exist inside a Matrix:
>>> mat = Matrix([[x**2, pw, sin(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];'
Custom printing can be defined for certain types by passing a dictionary of “type” : “function” to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Octave function.>>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_octave_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])'
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> octave_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));'
Rust code printing
- sympy.printing.rust.known_functions = {'Abs': 'abs', 'Max': 'max', 'Min': 'min', 'Pow': [(<function <lambda>>, 'recip', 2), (<function <lambda>>, 'sqrt', 2), (<function <lambda>>, 'sqrt().recip', 2), (<function <lambda>>, 'cbrt', 2), (<function <lambda>>, 'exp2', 3), (<function <lambda>>, 'powi', 1), (<function <lambda>>, 'powf', 1)], 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'exp': [(<function <lambda>>, 'exp', 2)], 'floor': 'floor', 'log': 'ln', 'sign': 'signum', 'sin': 'sin', 'sinh': 'sinh', 'sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh'}
- class sympy.printing.rust.RustCodePrinter(settings={})[source]
A printer to convert SymPy expressions to strings of Rust code
- printmethod: str = '_rust_code'
- sympy.printing.rust.rust_code(expr, assign_to=None, **settings)[source]
Converts an expr to a string of Rust code
- Parameters
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string,
Symbol
,MatrixSymbol
, orIndexed
type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.precision : integer, optional
The precision for numbers such as pi [default=15].
user_functions : dict, optional
A dictionary where the keys are string representations of either
FunctionClass
orUndefinedFunction
instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.dereference : iterable, optional
An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if
dereference=[a]
, the resulting code would print(*a)
instead ofa
.human : bool, optional
If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
contract: bool, optional
If True,
Indexed
instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].
Examples
>>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> rust_code((2*tau)**Rational(7, 2)) '8*1.4142135623731*tau.powf(7_f64/2.0)' >>> rust_code(sin(x), assign_to="s") 's = x.sin();'
Simple custom printing can be defined for certain types by passing a dictionary of {“type” : “function”} to the
user_functions
kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].>>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs", 4), ... (lambda x: x.is_integer, "ABS", 4)], ... "func": "f" ... } >>> func = Function('func') >>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions) '(fabs(x) + x.CEIL()).f()'
Piecewise
expressions are converted into conditionals. If anassign_to
variable is provided an if statement is created, otherwise the ternary operator is used. Note that if thePiecewise
lacks a default term, represented by(expr, True)
then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.>>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(rust_code(expr, tau)) tau = if (x > 0) { x + 1 } else { x };
Support for loops is provided through
Indexed
types. Withcontract=True
these expressions will be turned into loops, whereascontract=False
will just print the assignment expression that should be looped over:>>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> rust_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
Matrices are also supported, but a
MatrixSymbol
of the same dimensions must be provided toassign_to
. Note that any expression that can be generated normally can also exist inside a Matrix:>>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(rust_code(mat, A)) A = [x.powi(2), if (x > 0) { x + 1 } else { x }, x.sin()];
Aesara Code printing
- class sympy.printing.aesaracode.AesaraPrinter(*args, **kwargs)[source]
Code printer which creates Aesara symbolic expression graphs.
- Parameters
cache : dict
Cache dictionary to use. If None (default) will use the global cache. To create a printer which does not depend on or alter global state pass an empty dictionary. Note: the dictionary is not copied on initialization of the printer and will be updated in-place, so using the same dict object when creating multiple printers or making multiple calls to
aesara_code()
oraesara_function()
means the cache is shared between all these applications.
Attributes
cache
(dict) A cache of Aesara variables which have been created for SymPy symbol-like objects (e.g.
sympy.core.symbol.Symbol
orsympy.matrices.expressions.MatrixSymbol
). This is used to ensure that all references to a given symbol in an expression (or multiple expressions) are printed as the same Aesara variable, which is created only once. Symbols are differentiated only by name and type. The format of the cache’s contents should be considered opaque to the user.- printmethod: str = '_aesara'
- doprint(expr, dtypes=None, broadcastables=None)[source]
Convert a SymPy expression to a Aesara graph variable.
The
dtypes
andbroadcastables
arguments are used to specify the data type, dimension, and broadcasting behavior of the Aesara variables corresponding to the free symbols inexpr
. Each is a mapping from SymPy symbols to the value of the corresponding argument toaesara.tensor.var.TensorVariable
.See the corresponding documentation page for more information on broadcasting in Aesara.
- Parameters
expr : sympy.core.expr.Expr
SymPy expression to print.
dtypes : dict
Mapping from SymPy symbols to Aesara datatypes to use when creating new Aesara variables for those symbols. Corresponds to the
dtype
argument toaesara.tensor.var.TensorVariable
. Defaults to'floatX'
for symbols not included in the mapping.broadcastables : dict
Mapping from SymPy symbols to the value of the
broadcastable
argument toaesara.tensor.var.TensorVariable
to use when creating Aesara variables for those symbols. Defaults to the empty tuple for symbols not included in the mapping (resulting in a scalar).- Returns
aesara.graph.basic.Variable
A variable corresponding to the expression’s value in a Aesara symbolic expression graph.
- sympy.printing.aesaracode.aesara_code(expr, cache=None, **kwargs)[source]
Convert a SymPy expression into a Aesara graph variable.
- Parameters
expr : sympy.core.expr.Expr
SymPy expression object to convert.
cache : dict
Cached Aesara variables (see
AesaraPrinter.cache
). Defaults to the module-level global cache.dtypes : dict
Passed to
AesaraPrinter.doprint()
.broadcastables : dict
Passed to
AesaraPrinter.doprint()
.- Returns
aesara.graph.basic.Variable
A variable corresponding to the expression’s value in a Aesara symbolic expression graph.
- sympy.printing.aesaracode.aesara_function(inputs, outputs, scalar=False, *, dim=None, dims=None, broadcastables=None, **kwargs)[source]
Create a Aesara function from SymPy expressions.
The inputs and outputs are converted to Aesara variables using
aesara_code()
and then passed toaesara.function
.- Parameters
inputs
Sequence of symbols which constitute the inputs of the function.
outputs
Sequence of expressions which constitute the outputs(s) of the function. The free symbols of each expression must be a subset of
inputs
.scalar : bool
Convert 0-dimensional arrays in output to scalars. This will return a Python wrapper function around the Aesara function object.
cache : dict
Cached Aesara variables (see
AesaraPrinter.cache
). Defaults to the module-level global cache.dtypes : dict
Passed to
AesaraPrinter.doprint()
.broadcastables : dict
Passed to
AesaraPrinter.doprint()
.dims : dict
Alternative to
broadcastables
argument. Mapping from elements ofinputs
to integers indicating the dimension of their associated arrays/tensors. Overridesbroadcastables
argument if given.dim : int
Another alternative to the
broadcastables
argument. Common number of dimensions to use for all arrays/tensors.aesara_function([x, y], [...], dim=2)
is equivalent to usingbroadcastables={x: (False, False), y: (False, False)}
.- Returns
callable
A callable object which takes values of
inputs
as positional arguments and returns an output array for each of the expressions inoutputs
. Ifoutputs
is a single expression the function will return a Numpy array, if it is a list of multiple expressions the function will return a list of arrays. See description of thesqueeze
argument above for the behavior when a single output is passed in a list. The returned object will either be an instance ofaesara.compile.function.types.Function
or a Python wrapper function around one. In both cases, the returned value will have aaesara_function
attribute which points to the return value ofaesara.function
.
Examples
>>> from sympy.abc import x, y, z >>> from sympy.printing.aesaracode import aesara_function
A simple function with one input and one output:
>>> f1 = aesara_function([x], [x**2 - 1], scalar=True) >>> f1(3) 8.0
A function with multiple inputs and one output:
>>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True) >>> f2(3, 4, 2) 5.0
A function with multiple inputs and multiple outputs:
>>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True) >>> f3(2, 3) [13.0, -5.0]
See also
- sympy.printing.aesaracode.dim_handling(inputs, dim=None, dims=None, broadcastables=None)[source]
Get value of
broadcastables
argument toaesara_code()
from keyword arguments toaesara_function()
.Included for backwards compatibility.
- Parameters
inputs
Sequence of input symbols.
dim : int
Common number of dimensions for all inputs. Overrides other arguments if given.
dims : dict
Mapping from input symbols to number of dimensions. Overrides
broadcastables
argument if given.broadcastables : dict
Explicit value of
broadcastables
argument toAesaraPrinter.doprint()
. If not None function will return this value unchanged.- Returns
dict
Dictionary mapping elements of
inputs
to their “broadcastable” values (tuple ofbool
s).
Gtk
You can print to a gtkmathview widget using the function print_gtk
located in sympy.printing.gtk
(it requires to have installed
gtkmathview and libgtkmathview-bin in some systems).
GtkMathView accepts MathML, so this rendering depends on the MathML representation of the expression.
Usage:
from sympy import *
print_gtk(x**2 + 2*exp(x**3))
LambdaPrinter
This classes implements printing to strings that can be used by the
sympy.utilities.lambdify.lambdify()
function.
LatexPrinter
This class implements LaTeX printing. See sympy.printing.latex
.
- sympy.printing.latex.accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg']
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
- sympy.printing.latex.latex(expr, *, full_prec=False, fold_frac_powers=False, fold_func_brackets=False, fold_short_frac=None, inv_trig_style='abbreviated', itex=False, ln_notation=False, long_frac_ratio=None, mat_delim='[', mat_str=None, mode='plain', mul_symbol=None, order=None, symbol_names={}, root_notation=True, mat_symbol_style='plain', imaginary_unit='i', gothic_re_im=False, decimal_separator='period', perm_cyclic=True, parenthesize_super=True, min=None, max=None)[source]
Convert the given expression to LaTeX string representation.
- Parameters
full_prec: boolean, optional
If set to True, a floating point number is printed with full precision.
fold_frac_powers : boolean, optional
Emit
^{p/q}
instead of^{\frac{p}{q}}
for fractional powers.fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit
p / q
instead of\frac{p}{q}
when the denominator is simple enough (at most two terms and no powers). The default value isTrue
for inline mode,False
otherwise.inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
abbreviated
,full
, orpower
. Defaults toabbreviated
.itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
$$...$$
.ln_notation : boolean, optional
If set to
True
,\ln
is used instead of default\log
.long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If
None
(the default value), long fractions are not broken up.mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of
[
,(
, or the empty string. Defaults to[
.mat_str : string, optional
Which matrix environment string to emit.
smallmatrix
,matrix
,array
, etc. Defaults tosmallmatrix
for inline mode,matrix
for matrices of no more than 10 columns, andarray
otherwise.mode: string, optional
Specifies how the generated code will be delimited.
mode
can be one ofplain
,inline
,equation
orequation*
. Ifmode
is set toplain
, then the resulting code will not be delimited at all (this is the default). Ifmode
is set toinline
then inline LaTeX$...$
will be used. Ifmode
is set toequation
orequation*
, the resulting code will be enclosed in theequation
orequation*
environment (remember to importamsmath
forequation*
), unless theitex
option is set. In the latter case, the$$...$$
syntax is used.mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of
None
,ldot
,dot
, ortimes
.order: string, optional
Any of the supported monomial orderings (currently
lex
,grlex
, orgrevlex
),old
, andnone
. This parameter does nothing for Mul objects. Setting order toold
uses the compatibility ordering for Add defined in Printer. For very large expressions, set theorder
keyword tonone
if speed is a concern.symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to
False
, exponents of the form 1/n are printed in fractonal form. Default isTrue
, to print exponent in root form.mat_symbol_style : string, optional
Can be either
plain
(default) orbold
. If set tobold
, a MatrixSymbol A will be printed as\mathbf{A}
, otherwise asA
.imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are “i” (default) and “j”. Adding “r” or “t” in front gives
\mathrm
or\text
, so “ri” leads to\mathrm{i}
which gives \(\mathrm{i}\).gothic_re_im : boolean, optional
If set to
True
, \(\Re\) and \(\Im\) is used forre
andim
, respectively. The default isFalse
leading to \(\operatorname{re}\) and \(\operatorname{im}\).decimal_separator : string, optional
Specifies what separator to use to separate the whole and fractional parts of a floating point number as in \(2.5\) for the default,
period
or \(2{,}5\) whencomma
is specified. Lists, sets, and tuple are printed with semicolon separating the elements whencomma
is chosen. For example, [1; 2; 3] whencomma
is chosen and [1,2,3] for whenperiod
is chosen.parenthesize_super : boolean, optional
If set to
False
, superscripted expressions will not be parenthesized when powered. Default isTrue
, which parenthesizes the expression when powered.min: Integer or None, optional
Sets the lower bound for the exponent to print floating point numbers in fixed-point format.
max: Integer or None, optional
Sets the upper bound for the exponent to print floating point numbers in fixed-point format.
Notes
Not using a print statement for printing, results in double backslashes for latex commands since that’s the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}}
mode
anditex
options:>>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2}
Logarithms:
>>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)}
latex()
also supports the builtin container typeslist
,tuple
, anddict
:>>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$
Unsupported types are rendered as monospaced plaintext:
>>> print(latex(int)) \mathtt{\text{<class 'int'>}} >>> print(latex("plain % text")) \mathtt{\text{plain \% text}}
See Example of Custom Printing Method for an example of how to override this behavior for your own types by implementing
_latex
.Changed in version 1.7.0: Unsupported types no longer have their
str
representation treated as valid latex.
MathMLPrinter
This class is responsible for MathML printing. See sympy.printing.mathml
.
More info on mathml : http://www.w3.org/TR/MathML2
- class sympy.printing.mathml.MathMLPrinterBase(settings=None)[source]
Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter.
- class sympy.printing.mathml.MathMLContentPrinter(settings=None)[source]
Prints an expression to the Content MathML markup language.
References: https://www.w3.org/TR/MathML2/chapter4.html
- printmethod: str = '_mathml_content'
- class sympy.printing.mathml.MathMLPresentationPrinter(settings=None)[source]
Prints an expression to the Presentation MathML markup language.
References: https://www.w3.org/TR/MathML2/chapter3.html
- printmethod: str = '_mathml_presentation'
- sympy.printing.mathml.mathml(expr, printer='content', *, order=None, encoding='utf-8', fold_frac_powers=False, fold_func_brackets=False, fold_short_frac=None, inv_trig_style='abbreviated', ln_notation=False, long_frac_ratio=None, mat_delim='[', mat_symbol_style='plain', mul_symbol=None, root_notation=True, symbol_names={}, mul_symbol_mathml_numbers='·')[source]
Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML.
- sympy.printing.mathml.print_mathml(expr, printer='content', **settings)[source]
Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML.
Examples
>>> ## >>> from sympy import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> >>> print_mathml(x+1, printer='presentation') <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow>
PythonCodePrinter
Python code printers
This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code.
- class sympy.printing.pycode.MpmathPrinter(settings=None)[source]
Lambda printer for mpmath which maintains precision for floats
- sympy.printing.pycode.pycode(expr, **settings)[source]
Converts an expr to a string of Python code
- Parameters
expr : Expr
A SymPy expression.
fully_qualified_modules : bool
Whether or not to write out full module names of functions (
math.sin
vs.sin
). default:True
.standard : str or None, optional
Only ‘python3’ (default) is supported. This parameter may be removed in the future.
Examples
>>> from sympy import pycode, tan, Symbol >>> pycode(tan(Symbol('x')) + 1) 'math.tan(x) + 1'
PythonPrinter
This class implements Python printing. Usage:
>>> from sympy import print_python, sin
>>> from sympy.abc import x
>>> print_python(5*x**3 + sin(x))
x = Symbol('x')
e = 5*x**3 + sin(x)
srepr
This printer generates executable code. This code satisfies the identity
eval(srepr(expr)) == expr
.
srepr()
gives more low level textual output than repr()
Example:
>>> repr(5*x**3 + sin(x))
'5*x**3 + sin(x)'
>>> srepr(5*x**3 + sin(x))
"Add(Mul(Integer(5), Pow(Symbol('x'), Integer(3))), sin(Symbol('x')))"
srepr()
gives the repr
form, which is what repr()
would normally give
but for SymPy we don’t actually use srepr()
for __repr__
because it’s
is so verbose, it is unlikely that anyone would want it called by default.
Another reason is that lists call repr on their elements, like print([a, b, c])
calls repr(a)
, repr(b)
, repr(c)
. So if we used srepr for `` __repr__`` any list with
SymPy objects would include the srepr form, even if we used str()
or print()
.
StrPrinter
This module generates readable representations of SymPy expressions.
- sympy.printing.str.sstr(expr, *, order=None, full_prec='auto', sympy_integers=False, abbrev=False, perm_cyclic=True, min=None, max=None)[source]
Returns the expression as a string.
For large expressions where speed is a concern, use the setting order=’none’. If abbrev=True setting is used then units are printed in abbreviated form.
Examples
>>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)'
- sympy.printing.str.sstrrepr(expr, *, order=None, full_prec='auto', sympy_integers=False, abbrev=False, perm_cyclic=True, min=None, max=None)[source]
return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else is returned in str form.
This function could be useful for hooking into sys.displayhook
Tree Printing
The functions in this module create a representation of an expression as a tree.
- sympy.printing.tree.pprint_nodes(subtrees)[source]
Prettyprints systems of nodes.
Examples
>>> from sympy.printing.tree import pprint_nodes >>> print(pprint_nodes(["a", "b1\nb2", "c"])) +-a +-b1 | b2 +-c
- sympy.printing.tree.print_node(node, assumptions=True)[source]
Returns information about the “node”.
This includes class name, string representation and assumptions.
- Parameters
assumptions : bool, optional
See the
assumptions
keyword intree
- sympy.printing.tree.tree(node, assumptions=True)[source]
Returns a tree representation of “node” as a string.
It uses print_node() together with pprint_nodes() on node.args recursively.
- Parameters
asssumptions : bool, optional
The flag to decide whether to print out all the assumption data (such as
is_integer`, ``is_real
) associated with the expression or not.Enabling the flag makes the result verbose, and the printed result may not be determinisitic because of the randomness used in backtracing the assumptions.
See also
- sympy.printing.tree.print_tree(node, assumptions=True)[source]
Prints a tree representation of “node”.
- Parameters
asssumptions : bool, optional
The flag to decide whether to print out all the assumption data (such as
is_integer`, ``is_real
) associated with the expression or not.Enabling the flag makes the result verbose, and the printed result may not be determinisitic because of the randomness used in backtracing the assumptions.
Examples
>>> from sympy.printing import print_tree >>> from sympy import Symbol >>> x = Symbol('x', odd=True) >>> y = Symbol('y', even=True)
Printing with full assumptions information:
>>> print_tree(y**x) Pow: y**x +-Symbol: y | algebraic: True | commutative: True | complex: True | even: True | extended_real: True | finite: True | hermitian: True | imaginary: False | infinite: False | integer: True | irrational: False | noninteger: False | odd: False | rational: True | real: True | transcendental: False +-Symbol: x algebraic: True commutative: True complex: True even: False extended_nonzero: True extended_real: True finite: True hermitian: True imaginary: False infinite: False integer: True irrational: False noninteger: False nonzero: True odd: True rational: True real: True transcendental: False zero: False
Hiding the assumptions:
>>> print_tree(y**x, assumptions=False) Pow: y**x +-Symbol: y +-Symbol: x
See also
Preview
A useful function is preview
:
- sympy.printing.preview.preview(expr, output='png', viewer=None, euler=True, packages=(), filename=None, outputbuffer=None, preamble=None, dvioptions=None, outputTexFile=None, **latex_settings)[source]
View expression or LaTeX markup in PNG, DVI, PostScript or PDF form.
If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, ‘expr’, may also be a LaTeX string. The function will then run the appropriate viewer for the given output format or use the user defined one. By default png output is generated.
By default pretty Euler fonts are used for typesetting (they were used to typeset the well known “Concrete Mathematics” book). For that to work, you need the ‘eulervm.sty’ LaTeX style (in Debian/Ubuntu, install the texlive-fonts-extra package). If you prefer default AMS fonts or your system lacks ‘eulervm’ LaTeX package then unset the ‘euler’ keyword argument.
To use viewer auto-detection, lets say for ‘png’ output, issue
>>> from sympy import symbols, preview, Symbol >>> x, y = symbols("x,y")
>>> preview(x + y, output='png')
This will choose ‘pyglet’ by default. To select a different one, do
>>> preview(x + y, output='png', viewer='gimp')
The ‘png’ format is considered special. For all other formats the rules are slightly different. As an example we will take ‘dvi’ output format. If you would run
>>> preview(x + y, output='dvi')
then ‘view’ will look for available ‘dvi’ viewers on your system (predefined in the function, so it will try evince, first, then kdvi and xdvi). If nothing is found you will need to set the viewer explicitly.
>>> preview(x + y, output='dvi', viewer='superior-dvi-viewer')
This will skip auto-detection and will run user specified ‘superior-dvi-viewer’. If ‘view’ fails to find it on your system it will gracefully raise an exception.
You may also enter ‘file’ for the viewer argument. Doing so will cause this function to return a file object in read-only mode, if ‘filename’ is unset. However, if it was set, then ‘preview’ writes the genereted file to this filename instead.
There is also support for writing to a BytesIO like object, which needs to be passed to the ‘outputbuffer’ argument.
>>> from io import BytesIO >>> obj = BytesIO() >>> preview(x + y, output='png', viewer='BytesIO', ... outputbuffer=obj)
The LaTeX preamble can be customized by setting the ‘preamble’ keyword argument. This can be used, e.g., to set a different font size, use a custom documentclass or import certain set of LaTeX packages.
>>> preamble = "\\documentclass[10pt]{article}\n" \ ... "\\usepackage{amsmath,amsfonts}\\begin{document}" >>> preview(x + y, output='png', preamble=preamble)
If the value of ‘output’ is different from ‘dvi’ then command line options can be set (‘dvioptions’ argument) for the execution of the ‘dvi’+output conversion tool. These options have to be in the form of a list of strings (see subprocess.Popen).
Additional keyword args will be passed to the latex call, e.g., the symbol_names flag.
>>> phidd = Symbol('phidd') >>> preview(phidd, symbol_names={phidd:r'\ddot{\varphi}'})
For post-processing the generated TeX File can be written to a file by passing the desired filename to the ‘outputTexFile’ keyword argument. To write the TeX code to a file named “sample.tex” and run the default png viewer to display the resulting bitmap, do
>>> preview(x + y, outputTexFile="sample.tex")
Implementation - Helper Classes/Functions
- sympy.printing.conventions.split_super_sub(text)[source]
Split a symbol name into a name, superscripts and subscripts
The first part of the symbol name is considered to be its actual ‘name’, followed by super- and subscripts. Each superscript is preceded with a “^” character or by “__”. Each subscript is preceded by a “_” character. The three return values are the actual name, a list with superscripts and a list with subscripts.
Examples
>>> from sympy.printing.conventions import split_super_sub >>> split_super_sub('a_x^1') ('a', ['1'], ['x']) >>> split_super_sub('var_sub1__sup_sub2') ('var', ['sup'], ['sub1', 'sub2'])
CodePrinter
This class is a base class for other classes that implement code-printing functionality, and additionally lists a number of functions that cannot be easily translated to C or Fortran.
- class sympy.printing.codeprinter.CodePrinter(settings=None)[source]
The base class for code-printing subclasses.
- printmethod: str = '_sympystr'
- doprint(expr, assign_to=None)[source]
Print the expression as code.
- Parameters
expr : Expression
The expression to be printed.
assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional)
If provided, the printed code will set the expression to a variable or multiple variables with the name or names given in
assign_to
.
Precedence
- sympy.printing.precedence.PRECEDENCE = {'Add': 40, 'And': 30, 'Atom': 1000, 'BitwiseAnd': 38, 'BitwiseOr': 36, 'BitwiseXor': 37, 'Func': 70, 'Lambda': 1, 'Mul': 50, 'Not': 100, 'Or': 20, 'Pow': 60, 'Relational': 35, 'Xor': 10}
Default precedence values for some basic types.
- sympy.printing.precedence.PRECEDENCE_VALUES = {'Add': 40, 'And': 30, 'Equality': 50, 'Equivalent': 10, 'Function': 70, 'HadamardPower': 60, 'HadamardProduct': 50, 'Implies': 10, 'KroneckerProduct': 50, 'MatAdd': 40, 'MatPow': 60, 'MatrixSolve': 50, 'Mod': 50, 'NegativeInfinity': 40, 'Not': 100, 'Or': 20, 'Pow': 60, 'Relational': 35, 'Sub': 40, 'TensAdd': 40, 'TensMul': 50, 'Unequality': 50, 'Xor': 10}
A dictionary assigning precedence values to certain classes. These values are treated like they were inherited, so not every single class has to be named here.
- sympy.printing.precedence.PRECEDENCE_FUNCTIONS = {'Float': <function precedence_Float>, 'FracElement': <function precedence_FracElement>, 'Integer': <function precedence_Integer>, 'Mul': <function precedence_Mul>, 'PolyElement': <function precedence_PolyElement>, 'Rational': <function precedence_Rational>, 'UnevaluatedExpr': <function precedence_UnevaluatedExpr>}
Sometimes it’s not enough to assign a fixed precedence value to a class. Then a function can be inserted in this dictionary that takes an instance of this class as argument and returns the appropriate precedence value.
Pretty-Printing Implementation Helpers
- sympy.printing.pretty.pretty_symbology.U(name)[source]
Get a unicode character by name or, None if not found.
This exists because older versions of Python use older unicode databases.
- sympy.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)[source]
Set whether pretty-printer should use unicode by default
- sympy.printing.pretty.pretty_symbology.pretty_try_use_unicode()[source]
See if unicode output is available and leverage it if possible
The following two functions return the Unicode version of the inputted Greek letter.
- sympy.printing.pretty.pretty_symbology.greek_letters = ['alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lamda', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega']
Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
- sympy.printing.pretty.pretty_symbology.digit_2txt = {'0': 'ZERO', '1': 'ONE', '2': 'TWO', '3': 'THREE', '4': 'FOUR', '5': 'FIVE', '6': 'SIX', '7': 'SEVEN', '8': 'EIGHT', '9': 'NINE'}
- sympy.printing.pretty.pretty_symbology.symb_2txt = {'(': 'LEFT PARENTHESIS', ')': 'RIGHT PARENTHESIS', '+': 'PLUS SIGN', '-': 'MINUS', '=': 'EQUALS SIGN', '[': 'LEFT SQUARE BRACKET', ']': 'RIGHT SQUARE BRACKET', 'int': 'INTEGRAL', 'sum': 'SUMMATION', '{': 'LEFT CURLY BRACKET', '{}': 'CURLY BRACKET', '}': 'RIGHT CURLY BRACKET'}
The following functions return the Unicode subscript/superscript version of the character.
- sympy.printing.pretty.pretty_symbology.sub = {'(': '₍', ')': '₎', '+': '₊', '-': '₋', '0': '₀', '1': '₁', '2': '₂', '3': '₃', '4': '₄', '5': '₅', '6': '₆', '7': '₇', '8': '₈', '9': '₉', '=': '₌', 'a': 'ₐ', 'beta': 'ᵦ', 'chi': 'ᵪ', 'e': 'ₑ', 'gamma': 'ᵧ', 'h': 'ₕ', 'i': 'ᵢ', 'k': 'ₖ', 'l': 'ₗ', 'm': 'ₘ', 'n': 'ₙ', 'o': 'ₒ', 'p': 'ₚ', 'phi': 'ᵩ', 'r': 'ᵣ', 'rho': 'ᵨ', 's': 'ₛ', 't': 'ₜ', 'u': 'ᵤ', 'v': 'ᵥ', 'x': 'ₓ'}
- sympy.printing.pretty.pretty_symbology.sup = {'(': '⁽', ')': '⁾', '+': '⁺', '-': '⁻', '0': '⁰', '1': '¹', '2': '²', '3': '³', '4': '⁴', '5': '⁵', '6': '⁶', '7': '⁷', '8': '⁸', '9': '⁹', '=': '⁼', 'i': 'ⁱ', 'n': 'ⁿ'}
The following functions return Unicode vertical objects.
- sympy.printing.pretty.pretty_symbology.xobj(symb, length)[source]
Construct spatial object of given length.
return: [] of equal-length strings
- sympy.printing.pretty.pretty_symbology.vobj(symb, height)[source]
Construct vertical object of a given height
see: xobj
- sympy.printing.pretty.pretty_symbology.hobj(symb, width)[source]
Construct horizontal object of a given width
see: xobj
The following constants are for rendering roots and fractions.
- sympy.printing.pretty.pretty_symbology.root = {2: '√', 3: '∛', 4: '∜'}
- sympy.printing.pretty.pretty_symbology.frac = {(1, 2): '½', (1, 3): '⅓', (1, 4): '¼', (1, 5): '⅕', (1, 6): '⅙', (1, 8): '⅛', (2, 3): '⅔', (2, 5): '⅖', (3, 4): '¾', (3, 5): '⅗', (3, 8): '⅜', (4, 5): '⅘', (5, 6): '⅚', (5, 8): '⅝', (7, 8): '⅞'}
The following constants/functions are for rendering atoms and symbols.
- sympy.printing.pretty.pretty_symbology.atoms_table = {'Complexes': 'ℂ', 'EmptySequence': 'EmptySequence', 'EmptySet': '∅', 'Exp1': 'ℯ', 'ImaginaryUnit': 'ⅈ', 'Infinity': '∞', 'Integers': 'ℤ', 'Intersection': '∩', 'Modifier Letter Low Ring': '˳', 'Naturals': 'ℕ', 'Naturals0': 'ℕ₀', 'NegativeInfinity': '-∞', 'Pi': 'π', 'Rationals': 'ℚ', 'Reals': 'ℝ', 'Ring': '∘', 'SymmetricDifference': '∆', 'Union': '∪'}
- sympy.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None, printer=None)[source]
return pretty representation of an atom
- sympy.printing.pretty.pretty_symbology.pretty_symbol(symb_name, bold_name=False)[source]
return pretty representation of a symbol
- sympy.printing.pretty.pretty_symbology.annotated(letter)[source]
Return a stylised drawing of the letter
letter
, together with information on how to put annotations (super- and subscripts to the left and to the right) on it.See pretty.py functions _print_meijerg, _print_hyper on how to use this information.
Prettyprinter by Jurjen Bos. (I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay). All objects have a method that create a “stringPict”, that can be used in the str method for pretty printing.
- Updates by Jason Gedge (email <my last name> at cs mun ca)
terminal_string() method
minor fixes and changes (mostly to prettyForm)
- TODO:
Allow left/center/right alignment options for above/below and top/center/bottom alignment options for left/right
- class sympy.printing.pretty.stringpict.stringPict(s, baseline=0)[source]
An ASCII picture. The pictures are represented as a list of equal length strings.
- above(*args)[source]
Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture.
- below(*args)[source]
Put pictures under this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of top picture
Examples
>>> from sympy.printing.pretty.stringpict import stringPict >>> print(stringPict("x+3").below( ... stringPict.LINE, '3')[0]) x+3 --- 3
- left(*args)[source]
Put pictures (left to right) at left. Returns string, baseline arguments for stringPict.
- static next(*args)[source]
Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict.
- parens(left='(', right=')', ifascii_nougly=False)[source]
Put parentheses around self. Returns string, baseline arguments for stringPict.
left or right can be None or empty string which means ‘no paren from that side’
- render(*args, **kwargs)[source]
Return the string form of self.
Unless the argument line_break is set to False, it will break the expression in a form that can be printed on the terminal without being broken up.
- right(*args)[source]
Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0.
Examples
>>> from sympy.printing.pretty.stringpict import stringPict >>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0]) 1 10 + - 2
- static stack(*args)[source]
Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. The baseline is the baseline of the second picture. Everything is centered. Baseline is the baseline of the second picture. Strings are allowed. The special value stringPict.LINE is a row of ‘-’ extended to the width.
- class sympy.printing.pretty.stringpict.prettyForm(s, baseline=0, binding=0, unicode=None)[source]
Extension of the stringPict class that knows about basic math applications, optimizing double minus signs.
“Binding” is interpreted as follows:
ATOM this is an atom: never needs to be parenthesized FUNC this is a function application: parenthesize if added (?) DIV this is a division: make wider division if divided POW this is a power: only parenthesize if exponent MUL this is a multiplication: parenthesize if powered ADD this is an addition: parenthesize if multiplied or powered NEG this is a negative number: optimize if added, parenthesize if multiplied or powered OPEN this is an open object: parenthesize if added, multiplied, or powered (example: Piecewise)
dotprint
- sympy.printing.dot.dotprint(expr, styles=((<class 'sympy.core.basic.Basic'>, {'color': 'blue', 'shape': 'ellipse'}), (<class 'sympy.core.expr.Expr'>, {'color': 'black'})), atom=<function <lambda>>, maxdepth=None, repeat=True, labelfunc=<class 'str'>, **kwargs)[source]
DOT description of a SymPy expression tree
- Parameters
styles : list of lists composed of (Class, mapping), optional
Styles for different classes.
The default is
( (Basic, {'color': 'blue', 'shape': 'ellipse'}), (Expr, {'color': 'black'}) )
atom : function, optional
Function used to determine if an arg is an atom.
A good choice is
lambda x: not x.args
.The default is
lambda x: not isinstance(x, Basic)
.maxdepth : integer, optional
The maximum depth.
The default is
None
, meaning no limit.repeat : boolean, optional
Whether to use different nodes for common subexpressions.
The default is
True
.For example, for
x + x*y
withrepeat=True
, it will have two nodes forx
; withrepeat=False
, it will have one node.Warning
Even if a node appears twice in the same object like
x
inPow(x, x)
, it will still only appear once. Hence, withrepeat=False
, the number of arrows out of an object might not equal the number of args it has.labelfunc : function, optional
A function to create a label for a given leaf node.
The default is
str
.Another good option is
srepr
.For example with
str
, the leaf nodes ofx + 1
are labeled,x
and1
. Withsrepr
, they are labeledSymbol('x')
andInteger(1)
.**kwargs : optional
Additional keyword arguments are included as styles for the graph.
Examples
>>> from sympy import dotprint >>> from sympy.abc import x >>> print(dotprint(x+2)) digraph{ # Graph style "ordering"="out" "rankdir"="TD" ######### # Nodes # ######### "Add(Integer(2), Symbol('x'))_()" ["color"="black", "label"="Add", "shape"="ellipse"]; "Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"]; "Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"]; ######### # Edges # ######### "Add(Integer(2), Symbol('x'))_()" -> "Integer(2)_(0,)"; "Add(Integer(2), Symbol('x'))_()" -> "Symbol('x')_(1,)"; }