Curves#
- class sympy.geometry.curve.Curve(function, limits)[source]#
A curve in space.
A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value.
- Parameters
function : list of functions
limits : 3-tuple
Function parameter and lower and upper bounds.
- Raises
ValueError
When \(functions\) are specified incorrectly. When \(limits\) are specified incorrectly.
Examples
>>> from sympy import Curve, sin, cos, interpolate >>> from sympy.abc import t, a >>> C = Curve((sin(t), cos(t)), (t, 0, 2)) >>> C.functions (sin(t), cos(t)) >>> C.limits (t, 0, 2) >>> C.parameter t >>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C Curve((t, t**2), (t, 0, 1)) >>> C.subs(t, 4) Point2D(4, 16) >>> C.arbitrary_point(a) Point2D(a, a**2)
Attributes
functions
parameter
limits
- property ambient_dimension#
The dimension of the curve.
- Returns
int :
the dimension of curve.
Examples
>>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve((t, t**2), (t, 0, 2)) >>> C.ambient_dimension 2
- arbitrary_point(parameter='t')[source]#
A parameterized point on the curve.
- Parameters
parameter : str or Symbol, optional
Default value is ‘t’. The Curve’s parameter is selected with None or self.parameter otherwise the provided symbol is used.
- Returns
Point :
Returns a point in parametric form.
- Raises
ValueError
When \(parameter\) already appears in the functions.
Examples
>>> from sympy import Curve, Symbol >>> from sympy.abc import s >>> C = Curve([2*s, s**2], (s, 0, 2)) >>> C.arbitrary_point() Point2D(2*t, t**2) >>> C.arbitrary_point(C.parameter) Point2D(2*s, s**2) >>> C.arbitrary_point(None) Point2D(2*s, s**2) >>> C.arbitrary_point(Symbol('a')) Point2D(2*a, a**2)
See also
- property free_symbols#
Return a set of symbols other than the bound symbols used to parametrically define the Curve.
- Returns
set :
Set of all non-parameterized symbols.
Examples
>>> from sympy.abc import t, a >>> from sympy import Curve >>> Curve((t, t**2), (t, 0, 2)).free_symbols set() >>> Curve((t, t**2), (t, a, 2)).free_symbols {a}
- property functions#
The functions specifying the curve.
- Returns
functions :
list of parameterized coordinate functions.
Examples
>>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve((t, t**2), (t, 0, 2)) >>> C.functions (t, t**2)
See also
- property length#
The curve length.
Examples
>>> from sympy import Curve >>> from sympy.abc import t >>> Curve((t, t), (t, 0, 1)).length sqrt(2)
- property limits#
The limits for the curve.
- Returns
limits : tuple
Contains parameter and lower and upper limits.
Examples
>>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve([t, t**3], (t, -2, 2)) >>> C.limits (t, -2, 2)
See also
- property parameter#
The curve function variable.
- Returns
Symbol :
returns a bound symbol.
Examples
>>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve([t, t**2], (t, 0, 2)) >>> C.parameter t
See also
- plot_interval(parameter='t')[source]#
The plot interval for the default geometric plot of the curve.
- Parameters
parameter : str or Symbol, optional
Default value is ‘t’; otherwise the provided symbol is used.
- Returns
List :
- the plot interval as below:
[parameter, lower_bound, upper_bound]
Examples
>>> from sympy import Curve, sin >>> from sympy.abc import x, s >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval() [t, 1, 2] >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s) [s, 1, 2]
See also
limits
Returns limits of the parameter interval
- rotate(angle=0, pt=None)[source]#
This function is used to rotate a curve along given point
pt
at given angle(in radian).- Parameters
angle :
the angle at which the curve will be rotated(in radian) in counterclockwise direction. default value of angle is 0.
pt : Point
the point along which the curve will be rotated. If no point given, the curve will be rotated around origin.
- Returns
Curve :
returns a curve rotated at given angle along given point.
Examples
>>> from sympy import Curve, pi >>> from sympy.abc import x >>> Curve((x, x), (x, 0, 1)).rotate(pi/2) Curve((-x, x), (x, 0, 1))