Multi Degree of Freedom Holonomic System#
In this example we demonstrate the use of the functionality provided in
sympy.physics.mechanics
for deriving the equations of motion (EOM) of a holonomic
system that includes both particles and rigid bodies with contributing forces and torques,
some of which are specified forces and torques. The system is shown below:
The system will be modeled using JointsMethod
. First we need to create the
dynamicsymbols
needed to describe the system as shown in the above diagram.
In this case, the generalized coordinates \(q_1\) represent lateral distance of block from wall,
\(q_2\) represents ngle of the compound pendulum from vertical, \(q_3\) represents angle of the simple
pendulum from the compound pendulum. The generalized speeds \(u_1\) represents lateral speed of block,
\(u_2\) represents lateral speed of compound pendulum and \(u_3\) represents angular speed of C relative to B.
We also create some symbols
to represent the length and
mass of the pendulum, as well as gravity and others.
>>> from sympy import zeros, symbols
>>> from sympy.physics.mechanics import Body, PinJoint, PrismaticJoint, JointsMethod, inertia
>>> from sympy.physics.mechanics import dynamicsymbols
>>> q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1, q2, q3, u1, u2, u3')
>>> l, k, c, g, kT = symbols('l, k, c, g, kT')
>>> ma, mb, mc, IBzz= symbols('ma, mb, mc, IBzz')
Next, we create the bodies and connect them using joints to establish the kinematics.
>>> wall = Body('N')
>>> block = Body('A', mass=ma)
>>> IB = inertia(block.frame, 0, 0, IBzz)
>>> compound_pend = Body('B', mass=mb, central_inertia=IB)
>>> simple_pend = Body('C', mass=mc)
>>> bodies = (wall, block, compound_pend, simple_pend)
>>> slider = PrismaticJoint('J1', wall, block, coordinates=q1, speeds=u1)
>>> rev1 = PinJoint('J2', block, compound_pend, coordinates=q2, speeds=u2,
... child_axis=compound_pend.z, child_joint_pos=l*2/3*compound_pend.y,
... parent_axis=block.z)
>>> rev2 = PinJoint('J3', compound_pend, simple_pend, coordinates=q3, speeds=u3,
... child_axis=simple_pend.z, parent_joint_pos=-l/3*compound_pend.y,
... parent_axis=compound_pend.z, child_joint_pos=l*simple_pend.y)
>>> joints = (slider, rev1, rev2)
Now we can apply loads (forces and torques) to the bodies, gravity acts on all bodies, a linear spring and damper act on block and wall, a rotational linear spring acts on C relative to B specified torque T acts on compound_pend and block, specified force F acts on block.
>>> F, T = dynamicsymbols('F, T')
>>> block.apply_force(F*block.x)
>>> block.apply_force(-k*q1*block.x, reaction_body=wall)
>>> block.apply_force(-c*u1*block.x, reaction_body=wall)
>>> compound_pend.apply_torque(T*compound_pend.z, reaction_body=block)
>>> simple_pend.apply_torque(kT*q3*simple_pend.z, reaction_body=compound_pend)
>>> block.apply_force(-wall.y*block.mass*g)
>>> compound_pend.apply_force(-wall.y*compound_pend.mass*g)
>>> simple_pend.apply_force(-wall.y*simple_pend.mass*g)
With the problem setup, the equations of motion can be generated using the
JointsMethod
class with KanesMethod in backend.
>>> method = JointsMethod(wall, slider, rev1, rev2)
>>> method.form_eoms()
Matrix([
[ -c*u1(t) - k*q1(t) + 2*l*mb*u2(t)**2*sin(q2(t))/3 - l*mc*(-sin(q2(t))*cos(q3(t)) - sin(q3(t))*cos(q2(t)))*(u2(t) + u3(t))*u3(t) - mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3)*Derivative(u3(t), t) + mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q2(t)) - (2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3)*Derivative(u2(t), t) - (ma + mb + mc)*Derivative(u1(t), t) + F(t)],
[ -2*g*l*mb*sin(q2(t))/3 - 2*g*l*mc*sin(q2(t))/3 + 2*l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 - mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9)*Derivative(u3(t), t) - (2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3)*Derivative(u1(t), t) - (IBzz + 4*l**2*mb/9 + 4*l**2*mc/9)*Derivative(u2(t), t) + T(t)],
[-g*l*mc*(sin(q2(t))*cos(q3(t)) + sin(q3(t))*cos(q2(t))) - g*l*mc*sin(q2(t))/3 + kT*q3(t) + l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 - l*mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q3(t)) - mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3)*Derivative(u1(t), t) - mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9)*Derivative(u2(t), t) - mc*(2*l**2*cos(q3(t))/3 + 10*l**2/9)*Derivative(u3(t), t)]])
>>> method.mass_matrix_full
Matrix([
[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, ma + mb + mc, 2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3, mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3)],
[0, 0, 0, 2*l*mb*cos(q2(t))/3 + 2*l*mc*cos(q2(t))/3, IBzz + 4*l**2*mb/9 + 4*l**2*mc/9, mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9)],
[0, 0, 0, mc*(l*(-sin(q2(t))*sin(q3(t)) + cos(q2(t))*cos(q3(t))) + l*cos(q2(t))/3), mc*(2*l**2*cos(q3(t))/3 + 2*l**2/9), mc*(2*l**2*cos(q3(t))/3 + 10*l**2/9)]])
>>> method.forcing_full
Matrix([
[ u1(t)],
[ u2(t)],
[ u3(t)],
[ -c*u1(t) - k*q1(t) + 2*l*mb*u2(t)**2*sin(q2(t))/3 - l*mc*(-sin(q2(t))*cos(q3(t)) - sin(q3(t))*cos(q2(t)))*(u2(t) + u3(t))*u3(t) + mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q2(t)) + F(t)],
[ -2*g*l*mb*sin(q2(t))/3 - 2*g*l*mc*sin(q2(t))/3 + 2*l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 + T(t)],
[-g*l*mc*(sin(q2(t))*cos(q3(t)) + sin(q3(t))*cos(q2(t))) - g*l*mc*sin(q2(t))/3 + kT*q3(t) + l**2*mc*(u2(t) + u3(t))*u3(t)*sin(q3(t))/3 - l*mc*(2*l*u2(t)/3 + l*u3(t)/3)*u2(t)*sin(q3(t))]])